A double-assurance mechanism controls cell cycle exit upon terminal differentiation in Drosophila.
نویسندگان
چکیده
Terminal differentiation is often coupled with permanent exit from the cell cycle, yet it is unclear how cell proliferation is blocked in differentiated tissues. We examined the process of cell cycle exit in Drosophila wings and eyes and discovered that cell cycle exit can be prevented or even reversed in terminally differentiating cells by the simultaneous activation of E2F1 and either Cyclin E/Cdk2 or Cyclin D/Cdk4. Enforcing both E2F and Cyclin/Cdk activities is required to bypass exit because feedback between E2F and Cyclin E/Cdk2 is inhibited after cells differentiate, ensuring that cell cycle exit is robust. In some differentiating cell types (e.g., neurons), known inhibitors including the retinoblastoma homolog Rbf and the p27 homolog Dacapo contribute to parallel repression of E2F and Cyclin E/Cdk2. In other cell types, however (e.g., wing epithelial cells), unknown mechanisms inhibit E2F and Cyclin/Cdk activity in parallel to enforce permanent cell cycle exit upon terminal differentiation.
منابع مشابه
DRP1-dependent mitochondrial fission initiates follicle cell differentiation during Drosophila oogenesis
Exit from the cell cycle is essential for cells to initiate a terminal differentiation program during development, but what controls this transition is incompletely understood. In this paper, we demonstrate a regulatory link between mitochondrial fission activity and cell cycle exit in follicle cell layer development during Drosophila melanogaster oogenesis. Posterior-localized clonal cells in ...
متن کاملA robust cell cycle control mechanism limits E2F-induced proliferation of terminally differentiated cells in vivo
Terminally differentiated cells in Drosophila melanogaster wings and eyes are largely resistant to proliferation upon deregulation of either E2F or cyclin E (CycE), but exogenous expression of both factors together can bypass cell cycle exit. In this study, we show this is the result of cooperation of cell cycle control mechanisms that limit E2F-CycE positive feedback and prevent cycling after ...
متن کاملThe Molecular Chaperone Hsp90 Is Required for Cell Cycle Exit in Drosophila melanogaster
The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP...
متن کاملMinibrain drives the Dacapo-dependent cell cycle exit of neurons in the Drosophila brain by promoting asense and prospero expression.
A key aim of neurodevelopmental research is to understand how precursor cells decide to stop dividing and commence their terminal differentiation at the correct time and place. Here, we show that minibrain (mnb), the Drosophila ortholog of the Down syndrome candidate gene DYRK1A, is transiently expressed in newborn neuronal precursors known as ganglion cells (GCs). Mnb promotes the cell cycle e...
متن کاملThe Drosophila Sp8 transcription factor Buttonhead prevents premature differentiation of intermediate neural progenitors
Intermediate neural progenitor cells (INPs) need to avoid differentiation and cell cycle exit while maintaining restricted developmental potential, but mechanisms preventing differentiation and cell cycle exit of INPs are not well understood. In this study, we report that the Drosophila homolog of mammalian Sp8 transcription factor Buttonhead (Btd) prevents premature differentiation and cell cy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental cell
دوره 12 4 شماره
صفحات -
تاریخ انتشار 2007